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1 Spectral Content of one Light Curve
A light curve is a graph that displays the count rate x, i.e. the number of photons received per
time from an astronomical object, versus time t:

xk ≡ x(t = k) for k = 1, . . . , N (1)

To analyze the count rate variability one often uses the Discrete Fourier Transformations
(DFT):

Xj ≡
N−1∑
k=0

xk exp(2πijk/N) , j = [−N/2, . . . , 0, . . . , N/2] (2)

The power spectrum P (f), where f is frequency1, can then be obtained by normalizing the
Fourier coefficients according to

P (fj) = A |X (fj)|2 , (3)

where A is a normalization coefficient, see section 1.1. This P (f) is often called the PSD (power
spectral density) or the periodogram, as it is actually only an estimation of the true power
spectrum. For a better estimation, an observation is often split into several shorter so-called time
segments consisting of m number of bins (each of length ∆T ), so that Tseg = m∆T . After having
made a power spectrum for each segment one averages2 over the K = int(N/m) segments to get
the final power spectra

P (fj) =
1

K

K∑
i

Psegment(fj). (4)

Note that the segment’s power spectrum is normalized (see section 1.1) and noise-subtracted (see
section 1.2), using information only from the segment, before being averaged. The error in the
power spectrum can be taken as the standard error

δP (fj) =
σP (fj)√

K
, (5)

where σP is the standard deviation over all time segments’ power spectra. The error tells us how
far away the average P (fj) (the periodogram) is from the true power spectrum.

If the light curve has a sampling period ∆T , the power spectrum will exist for m/2 evenly spaced
frequencies fj = j/(m∆T ), where j = 1, 2, . . . ,m/2, i.e. with frequency resolution ∆f = 1/N∆T
and min/max given by

f ∈ [f1, fm/2] = [1/m∆T, 1/2∆T = fNyq]. (6)

Note that negative frequencies (the other m/2 of the frequencies) that pop up from the DFT
computation are not relevant for us. To cover low frequencies we need to set m high, i.e. partition
the original light curve into long segments. This will, however, make it harder to extract the high
frequencies, for which we need m low, i.e. short segments. The highest frequency, also called the
Nyquist frequency, is given solely by the time resolution.

1.1 Normalizations
There are several possible normalizations A, out of which the Miyamoto-normalization is the
normalization most often used in analysis of AGN and X-ray binaries because the integrated

1Note that this is not the frequency of light in Planck’s relation E = hf = hc/λ, but the frequency of the
variability of the light curve. To not get confused, we never talk about the frequency of light itself; instead, we talk
about its energy E.

2This is known as Bartlett’s Method and it minimizes the effect of counting statistics. Note also that we need
equally long segments to take the average, so unless N is a multiple of m we will not use all N data points.
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periodogram yields the fractional variance3 of the data. In Revnivtsev et al. (1999, 2000), they
claim (wrongly4) that this normalization is

ARev =
2

RNγ
=

2

R2T
, (7)

where Nγ = total number of counts in a time segment of length T , and R = average count rate
in the segment. Hence, R = Nγ/T ⇐⇒ Nγ = TR. The factor 2 is included to get a one-sided
RMS normalization, meaning that integration over all positive frequencies yield the full variance.
According to Vaughan and Nowak (1997); Uttley et al. (2014), the Miyamoto-normalization looks
like

A =
2∆T

R2N
=

2(∆T )2

R2T
6= ARev, (8)

where ∆T = T/N ⇐⇒ N = T/∆T , where N is the number of bins in the light curve. This
yeilds correct fractional rms (see section 1.3), meaning that Revnivtsev et al. (1999) probably
just forgot the (∆T )2-factor.

Note that in the case that we split the light curve into segments, we use m instead of N in Eq.
(8), and the mean count rate in the segment Rseg instead of R.

1.1.1 Other Normalizations

The other normalizations are related to the Miyamoto-normalization (also denoted Arms2):

R2Arms2 = RALeahy = Aabs. (9)

Depending on what normalization one chooses, the noise power (see section 1.2) will differ.

1.2 Poisson Noise
The total power Pj = P (fj) received is partly due to the signal Psignal from the object, partly due
to noise Pnoise, which is a consequence of observing discrete counts (photons), i.e.

Pj = Psignal + Pnoise. (10)

If a light curve consists of a binned photon counting signal (and in the absence of other effects such
as detector dead-time) the expected Poisson noise ‘background’ level in the case of a Miyamoto-
normalization is simply (see Appendix to Vaughan et al. (2003)) given by

Pnoise =
2(R+B)

R2

∆Tsamp

∆Tbin
≈ 2

R
, (11)

where R is the mean source count rate, B is the mean background count rate, ∆Tsamp is the
sampling interval and ∆Tbin is the time bin width. The factor of ∆Tsamp /∆Tbin accounts for
aliasing of the Poisson noise level if the original photon counting signal contained gaps. Often
∆Tsamp = ∆Tbin and B ≈ 0 so that the last equality holds. Hence, the signal power is given by

Psignal = Pj −
2

R
(12)

For other normalizations, we have

Pnoise =

{
2 in the case of Leahy-normalization
2R in the case of abs-normalization.

(13)

3In the Miyamoto-normalization, the units for the periodogram is (rms/mean)2 Hz−1 (where rms/mean is a
dimensionless quantity), or simply Hz−1. See more in section 1.3.

4A (∆T )2-factor is missing in the nominator.
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When I tried to apply the noise correction given by Eq. (11), however, there seemed to be noise
power missing. For Cygnus X-1 data between 30/03/96, 19:54:52, until 31/03/96, 01:41:00, a
B ≈ 0.1 was needed, and for Cygnus X-1 data 23/10/96 (this is the same data as in Nowak et al.
(1999)), 18:32:32, until 24/10/96, 02:30:28, a B ≈ 0.013. I then found a review by Uttley et al.
(2014), who clamied that if fluxes are not given in count rates (or the data are expressed as a count
rate but the statistics are not5 Poissonian), then the equivalent noise level (in the Miyamoto-
normalization) can be determined using bars of the light curve and the Nyquist frequency

Pnoise =
〈∆x2〉
R2fNyq

, (14)

where 〈∆x2〉 is the average of the squared error. I am not sure how this is derived, but this noise
power is expected in the case of Gaussian statistics. For both aforementioned cases, Eq. (14) give
the expected result (as given by HEASOFT’s PowSpec.f). By comparing other statistics (that
make use of the power spectra) with results from articles for the same data, Eq. (14) was also
confirmed.

1.3 Fractional Variance Estimations
For a discrete time series the integrated periodogram, if Miyamoto-normalized (since P (f) then
has the units (rms/mean)2Hz−1), yields the fractional variance (also called rms6) Fvar squared for
that particular realisation (see Vaughan et al. (2003); Wilkinson and Uttley (2009)),

F 2
var =

N/2∑
j=1

P (fj) ∆f, (15)

where P (fj) is the power after the noise power has been subtracted at frequency bin j. The rms
can also be defined directly by only looking at the light curve,

F 2
var =

σ2
XS

R2
, (16)

where σ2
XS is the so-called excess variance

σ2
XS = S2 − σ2

err, (17)

where, in turn, S2 is the variance of the light curve, given by

S2 =
1

N − 1

N∑
i=1

(xi −R)
2
, (18)

where xi is the count rate in the ith bin and R is the mean count rate. The expectation of noise
variance, given by the average squared-error σ2

err , is subtracted, leaving the ’excess variance’, σ2
XS .

The excess variance can be computed separately for K segments before being averaged over all
segments of the light curve. In the limit of large N these two rms-estimates, Eq. (15) and Eq.
(16), are identical.

To estimate the error we can propagate the error in the power spectrum, i.e.,

err(Fvar) =
1

2Fvar
∆f

√∑
j

(δP (fj))2, (19)

5It might be worth mentioning that the Gaussian distribution is the limit of the Poisson distribution in the case
of a large number of events N .

6The fractional variance also goes under the name fractional root mean square (or even shorter, just rms)
variability amplitude and has the units [rms/mean].
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where δP (fj) is the standard error σ/
√
K over all K segments’ P (fj)-values for frequency bin j.

There are, however, several other ways to estimate the error, all of which yield the same order of
magnitude (it happens, however, that they differ with a factor > 2):

1. Using a Monte Carlo approach: For each frequency bin j, we sample X times from a normal
distribution with mean given by the power spectrum average and the standard deviation given by
the power spectrum standard error δP (fj). In effect, we then have X new power spectra, for which
we compute the rms. The average rms of all these should be the same as the rms computed above
and the error is the standard deviation over all these rms.

2. In Vaughan et al. (2003) as well as in Wilkinson (2011), the error on the rms (Eq. (B2)) is
computed as

err(Fvar) =

√√√√√(√ 1

2N

σ2
err

x̄2Fvar

)2

+

√σ2
err

N

1

x̄

2

. (20)

2. In Uttley et al. (2014): The errors on the rms spectrum must be calculated based on the errors
expected due to Poisson noise (e.g. see Vaughan et al. 2003a), since they are independent between
different energy bins in the rms spectrum, whereas the errors in the rms due to intrinsic stochastic
variability (i.e. the intrinsic χ2

2 scatter in the PSD) are correlated between energy bins if the
coherence between bins is non-zero. In the limit where the intrinsic coherence is unity, the errors
on the (absolute) rms-spectrum are given by:

∆σX (νj) =

√√√√2σ2
X (νj)σ2

X, noise +
(
σ2
X, noise

)2
2KMσ2

X (νj)
, (21)

where σX (νj) is the noise-subtracted rms in the channel-of-interest x and σ2
X, noise is the ab-

solute rms-squared value obtained from integrating under the Poisson noise level of the bands,
i.e. σ2

X (νj) = (PX (νj)− PX, noise ) 〈x〉2∆νj , σ2
X, noise = PX, noise 〈x〉2∆νj , where the PSDs are

in the fractional rms-squared normalisation. See Vaughan et al. (2003a) for discussion of the
rms-spectrum and its error (determined from numerical simulations), and Wilkinson (2011) for a
formal derivation of the error.

1.4 RMS–Energy
Here you take a number of light curves in different energy bands. For each light curve you make a
power spectrum, andMiyamoto-normalize it so that the integral gives rms. You then integrate each
power spectrum to obtain rms for the corresponding energy, and plot it in a graph. Sometimes,
one takes the square root of the average excess variance plotted against energy, but note that this
is just the rms in absolute7 units, i.e. the rms scaled with the mean count rate R (see Eq. (16)).

1.4.1 In a Smaller Frequency Range

Both Eq. (15) and Eq. (16) computes the full rms, i.e. using all frequencies. What if we only
want to use a smaller frequency range? In this case, we simply integrate the power spectrum over
the desired frequency range.

In case we are able to change the bin size of our data, there is another way to handle a smaller
frequency range. By selecting the time bin size and the segment size, we can isolate different
time-scales of variability, effectively replicating the Fourier-resolved approach for the two time-
scale ranges that we are interested in. For this purpose, we choose two combinations of bin size

7In general, fractional/normalized units are often used in preference to absolute units as they are independent
of the mean count rate of a specific source. This means that, in principle, normalized amplitudes can be used to
compare sources with different fluxes (Vaughan et al., 2003)
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and segment size. To look at variations on shorter time-scales we choose 0.1s time bins measured
in segments of 4 s (i.e. 40 bins long), i.e. covering the frequency range 0.25 − 5 Hz. For longer
time-scale regions we use 2.7-s bins in segments of 270s, i.e. covering the range 0.0037 − 0.185
Hz. Note that these two frequency ranges do not overlap and also cover the two parts of both
source PSDs which show distinct behaviour in soft and hard bands (Wilkinson and Uttley, 2009;
Wilkinson, 2011).

If we want the smallest frequency range possible, we can do this for every frequency-bin, as in
Revnivtsev et al. (1999): For every obtained frequency bin the frequency dependent spectra were
constructed according to the formula

rms (Ei, fj) = Ri

√
Pi (fj) ∆fj =

√
2 |Xij |2

T
∆fj . (22)

Note that Pi (fj) ∆fj is essentially an integration yielding rms in that freqency bin, and that the
multiplication with R then yields the excess variance (i.e. the absolute rms). We can then plot
rms vs energy.

1.5 Frequency Resolved Spectroscopy (= RMS Spectrum)
This is a continuation of RMS-Energy and involves using the energy spectrum. Having already
computed rms for a given energy band and frequency range, we now simply multiply the rms for
a given channel8 by the value of the energy spectra (in counts/s/keV) in that channel. By doing
this for multiple energy and frequency bands, we can obtain a frequency resolved spectrum, as
discussed in section 3.2 of Wilkinson and Uttley (2009) and shown in Fig 1 of (Revnivtsev et al.,
1999). See also Axelsson and Done (2018) for an example how FRS can be used. In summary, we
need to do:

1. Calculate rms in % for each energy band over a given frequency range.

2. List which channels each energy band corresponds to.

3. Create a list indicating % for each channel.

4. Take the total energy spectrum and multiply each channel by the respective percentage.

8So first we need to convert the energy bands to the corresponding channels.
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2 Spectral Content of Two Simultaneous Light Curves
Another class of spectral analysis techniques measures the correlated variability between two si-
multaneous light curves. The four main (and related) statistics that we will discuss here are:

• Cross Spectrum

• Covariance

• Coherence

• Time-Lag

2.1 Cross-spectrum
The power spectrum can be called the autospectrum since it is the square of the Fourier transform of
the count rate (see Eq. (3)). The cross-spectrum, on the other hand, compares two simultaneous
light curves, e.g. from different energy bands, say x(t) and y(t). The product of the Fourier
transforms of the two light curves gives the cross-spectrum:

C(f) = X∗(f)Y (f) = |X(f)||Y (f)|ei[φy(f)−φx(f)] ≡ S∗
1 (f)S2(f), (23)

where ∗ here stands for the complex conjugate. In the last step we let Si denote the Fourier
transformations as this is common notation for the full signal. Note that no noise subtraction or
normalization is used.

2.2 Coherence
Another tool for measuring variability is coherence, γ2(f), which is a Fourier-frequency–dependent
measure of the degree of linear correlation between two concurrent time series. Specifically, it gives
the fraction of the mean-squared variability at f of one time series that can be attributed to, or
equivalently predicted from, the other (Nowak et al., 1999). The coherence is a real-valued function
that is computed as the squared cross-spectrum normalized by the autospectra (PSDs) of the two
light curves,

γ2(f) =
|〈C(f)〉|2

〈|S1(f)|2〉 〈|S2(f)|2〉
. (24)

The angled brackets 〈〉 here represent an averaging over light-curve segments, i.e. using m � N ,
and/or consecutive frequencies. Note the different orders on averaging and taking absolute value:
|〈 〉| vs 〈| |〉. Note also that the full signals are used, that is without subtracting any noise power;
this estimation of the coherence is, thus, most relevant for noiseless signals. As presented in Nowak
et al. (1999), the uncertainty on the coherence is in the case of Gaussian statistics and noiseless
signals given by

δγ2(f) =

√
2
[
1− γ2(f)

]
|γ(f)|

√
K

. (25)

Note that Vaughan and Nowak (1997) wrongly have an extra factor γ2(f) in the nominator.

2.3 Intrinsic Coherence for Noisy Signals
A strong noise component in the light curves may lead to a loss of coherence (as random noise
signals are not correlated). To further investigate this possibility, we can turn to the intrinsic
coherence (Eq. (8) from Vaughan and Nowak (1997)), which takes into account noisy signals by
applying a correction term to the measured coherence.
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Since the notation vary from article to article, which can be confusing, we will look at different
presentations9 of the intrinsic coherence. We will focus on the High powers, high measured coher-
ence–case presented in Vaughan and Nowak (1997), in which we need that the noise-subtracted
power (e.g. |S|2 in Vaughan and Nowak (1997)) is greater than a few times the noise power divided
by the number of segments10 (|N |2/

√
K) in each channel (light curve), and that the measured co-

herence satisfies γ2 greater than a few times n2/(P1P2), where Pi is the full signal power and n2 is
the noise-correction term to be introduced. Let’s first note that when we calculate the coherence
we choose A = 1 in Eq. (3), i.e. no normalization. Effectively, we therefore need to alter the noise
power with the same factor. In the case of Poisson noise11, we have

A =
2∆T

R2N
7→ 1 ⇐⇒ Pnoise =

2

R
7→ RN

∆T
(26)

In the case of Gaussian noise, we have

Pnoise =
〈∆x2〉
R2fNyq

=
2∆T 〈∆x2〉

R2
7→ N 〈∆x2〉 . (27)

2.3.1 Vaughan and Nowak (1997)

We now have a look at the intrinsic coherence as presented by Vaughan and Nowak (1997). With
noise present, the noiseless coherence Eq. (24) needs to be replaced by

γ2int =
|〈C〉|2 − n2

|S1|2|S2|2
, (28)

where subscript I denotes the intrinsic coherence, and the noise correction term n2 is (wrongly12)
given by

n2 ≡ 1

K

[
|S1|2|N2|2 + |N1|2|S2|2 + |N1|2|N2|2

]
, (29)

where, as already mentioned, m is used instead of K in the article. The error can be estimated as

δγ2int =
γ2int√
K

[
2n4K

(|〈C〉|2 − n2)
2 +
|N1|4

|S1|4
+
|N2|4

|S2|4
+
Kδγ2

γ4I

]1/2
. (30)

It is, however, not clear how C ought to be computed. It is discussed in Vaughan and Nowak
(1997) that since the full signal power is given by the sum of the noise-free signal power and noise
power,

Pi = |Si|2 + |Ni|2, (31)

C is now given by
|〈C〉|2 = |〈S∗

1S2〉+ 〈S∗
1N2〉+ 〈N∗

1S2〉+ 〈N∗
1N2〉|2 . (32)

They then claim that the three last terms average to a mean of zero with a variance term that is
equal to n2/2. My interpretation of introducing Eq. (32) is thus to motivate the noise correction
term, all the while still computing |〈C〉|2 in the same way as before (using the full signal).

9Best articles: 1)Nowak et al. (1999): some errors, e.g. a + instead of − in the last term in the expression for n2

and not so clear how to compute C(f). 2) Vaughan and Nowak (1997): brief discussion, but with nice examples.
3) Epitropakis and Papadakis (2017): correct equations, and here it seems like C(f) should be calculated without
noise subtraction. 4) Uttley et al. (2014): perform noise subtraction in strange order.

10In both articles, they use m instead of K for the number of independent samples, i.e. the number of segments.
Different notations everywhere, so be aware...

11We start from the expressions in the Miyamoto-normalization, but this is an arbitrary choice since we scale
both A and Pnoise, making the normalization irrelevant.

12The last sign in the nominator should be a minus.
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2.3.2 Epitropakis (2017)

In (Epitropakis and Papadakis, 2017), Eq. (24) is presented as

γ̂2xy (vp) ≡

∣∣∣Ĉxy (vp)
∣∣∣2

P̂x (vp) P̂y (vp)
, (33)

where Ĉxy was obtained by averaging the K individual cross-periodograms (once again, m is used
instead of K in the article) at each frequency. With noise present, this changes to

γ̂2int,xy (vp) =

∣∣∣Ĉxy (vp)
∣∣∣2 − ∣∣∣ζ̂ (vp)

∣∣∣2[
P̂x (vp)− Pεx

] [
P̂y (vp)− Pεy

] (34)

where vp here is the frequency, ˆdenotes the average over K segments, Px (Py) is the full signal
power, Pεx (Pεy ) is the noise power, and∣∣∣ζ̂ (vp)

∣∣∣2 =
1

K

[
P̂x (vp)Pεy + P̂y (vp)Pεx − PεxPεy

]
. (35)

Here it is clearer that we ought to compute
∣∣∣Ĉxy (vp)

∣∣∣2 as in the noiseless case. It is also clearer
that we ought to use the noise-subtracted powers in the denominator (which can be confusing when
comparing Eq. (24) (where |Si|2 = Pi) and Eq. (28) (where |Si|2 = Pi − |Ni|2)). Note also the
minus sign between the last two terms in Eq. (35), which wrongly is a plus in Eq. (29).

The error is given by

σ̂γ̂2
int,xy

(vp) =
γ̂2int,xy (vp)√

K


2
∣∣∣ζ̂ (vp)

∣∣∣4K[∣∣∣Ĉxy (vp)
∣∣∣2 − ∣∣∣ζ̂ (vp)

∣∣∣2]2 +

[
Pεx

P̂x (vp)− Pεx

]2
+

[
Pεy

P̂y (vp)− Pεy

]2

+K

[
σγ̂2 (vp)

γ̂2xy (vp)

]2}1/2

.

(36)
This expression is identical with Eq. (30) up to the last term, where it seems that the coherence
γ̂2xy (not intrinsic coherence) should be used, while Eq. (30) uses the intrinsic coherence. I haven’t
derived the error-expression, but it feels more likely that the intrinsic coherence would be used
here. I haven’t investigated the difference, but I have used γ̂2int,xy.

2.3.3 Uttley (2014)

In terms of inconsistencies, I found one more. In Uttley et al. (2014) it is stated that

γ2I (νj) =

∣∣C̄XY (νj)
∣∣2 − n2

P̄X (νj) P̄Y (νj)
, (37)

and

n2 =
[(
P̄X (νj)− PX,noise

)
PY,noise +

(
P̄Y (νj)− PY,noise

)
PX,noise + PX,noisePY,noise

]
/KM, (38)

where K = N//2,M = number of bins per segment. That is, Uttley et al. (2014) subtract the
noise power in differently (compare with Eq. (34) and (35)). They do not subtract the noise power
from the power spectra in the denominator of γ2I but do subtract the noise power from the power
spectra in the two first terms of n2. I have not used these expression nor have I managed to show
if these changes yields the same expression in the end.
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2.3.4 Condtions to be met for Useful Estimation

The intrinsic coherence can be usefully estimated (see Vaughan and Nowak (1997)) when:∣∣∣Ĉxy∣∣∣ ≥ n,
|S1|2/|N1|2 ≥ 1/

√
K,

|S2|2/|N2|2 ≥ 1/
√
K.

(39)

Note that in order to display a coherence-figure as Fig. 5 of Nowak et al. (1999), we cannot just
compute γ2int once. We normally need to use m high (i.e. many segments = K low) to cover
low frequencies and m low (K high) to cover high frequencies. The m-value determines not only
the frequency resolution 1/(m∆T ), but also highly influences the frequency range for which the
coherence can be usefully estimated through Eq. (39).

Due to these conditions, eachm yields an upper frequency limit fupper, which is the lowest frequency
at which at least one condition is broken. I have therefore implemented a way to automatically
change m, starting with a high m-value, which is then lowered each iteration. As a criteria I chose
to demand that the next iteration’s frequency resolution ∆f is increased until it satisfies

q1 ·∆f > fupper, (40)

where q1 is an arbitrary multiplicative factor (now set to 10) for conservative purposes. Since
∆f = 1/(m∆t) we require that

m = 2k <
q1

∆t · fupper
, (41)

where we want to find the largest k that satisfies the inequality each iteration. The lowest m
that is acceptable is now set to 28. Yet another multiplicative factor, q2, is used to combine these
coherence-computations for differentm; the used frequency range for eachm will be [∆f, q2 ·fupper].

2.4 Time Lag
The phase of the cross-spectrum Eq. (23) (i.e. the argument of the complex cross-spectrum vector)
φ(νj) ≡ arg[C(f)], gives the average phase lag between the two light curves at frequency f . The
time lag is thus given by

τ (f) =
φ

2πf
. (42)

Here, it is important to note that the standard domain for arg[C] is (−π, π], so use e.g. np.angle().
Using the noiseless coherence, the error is simply given by13 Epitropakis et al. (2016),

∆φ (f) =

√
1− γ2 (f)

2γ2 (f)K
, (43)

where K is the number of segments and the time-lag error is simply ∆τ = ∆φ/ (2πf). Note that
this is the same equation as Eq. (16) from Nowak et al. (1999).

There are two important notes:

1. The time lag is, like the coherence, computed using several m-values, as this is required to
cover very low and very high frequencies.

13Note that Uttley et al. (2014) uses M as the number of segments and K as the number of frequencies within a
frequency bin. In that article’s Eq. (9) there is a factor 1/

√
K, which comes from also performing an average over

frequency bins. As in Epitropakis and Papadakis (2017), we don’t average C over neighbouring frequencies as this
can introduce a bias at low frequencies (Epitropakis et al., 2016).
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2. Positive time lags do by convention usually mean that soft leads (hard lags). When computing
τ = np.angle(C)/(2· np.pi·f) we get the opposite, so we need to use a minus sign later.
This is what the time_lag-function returns. However, the plot_time_lag-function works
as it should.

2.5 Covariance Spectrum
The covariance spectrum is the cross-spectral counterpart of the rms-spectrum (in the same way as
the cross spectrum is the cross-spectral counterpart of the power spectrum). Remember that the
rms spectrum displays the rms amplitude of variability as a detailed function of energy. In the same
way, we can use the cross-spectrum to obtain a Fourier-frequency resolved covariance spectrum,
which shows the spectral shape of the components which are correlated with the reference band.
Not that multiplication with the energy spectra turns the covariance into a covariance spectrum.

This technique overcomes the problems of low signal-to-noise ratio and bias associated with the rms
spectrum and has smaller statistical errors (Wilkinson and Uttley, 2009). The problem with the
rms spectrum is when the signal-to-noise ratio is low, e.g. at higher energies. It is possible for the
expectation value of the Poisson variance term to be larger than the measured average variance
term, producing negative average excess variances (see Eq. (17)). If this is the case, it is not
possible to calculate the rms at these energies and this introduces a bias towards the statistically
higher-than-average realizations of rms values, which can still be recorded.

2.5.1 Wilkinson and Uttley (2009)

In order to overcome the problems related to the rms, Wilkinson and Uttley (2009) have developed
a technique called the ‘covariance spectrum’; the covariance is calculated as

σ2
cov =

1

N − 1

N∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
, (44)

where Yi now refers to the light curve for a ‘reference band’ running over some energy range where
the variability signal-to-noise ratio is large (i.e. usually a low-energy band).

The covariance spectrum does not suffer from the same problems as the rms spectrum, as no
Poisson error term has to be subtracted, since uncorrelated noise tends to cancel out and any
negative residuals do not affect the calculation. To remove the reference band component of the
covariance, and produce a spectrum in count-rate units, we obtain the normalized covariance for
each channel using

σcov,norm =
σ2
cov√
σ2
xs,y

, (45)

where σ2
xs,y is the excess variance of the reference band14. In short, one can think of the covariance

technique as applying a matched filter to the data, where the variations in the good signal-to-noise
ratio reference band pick out much weaker correlated variations in the energy channel of interest
that are buried in noise.

The error is computed as

Err [σcov,norm ] =

√
σ2
xs,xσ

2
err, y + σ2

xs,yσ
2
err,x + σ2

err,xσ
2
err,y

NKσ2
xs,y

, (46)

14Therefore, the only requirement for there being a valid, unbiased value of covariance at a given energy is that
the reference excess variance is not negative. This is usually the case, since the reference band is chosen to include
those energies with the largest absolute variability.
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where N is the total number of data points, K (M in article) is the number of segments, and
subscripts x and y identify excess variances and Poisson variance terms for the channel of interest
and reference band, respectively. The errors on the covariance are smaller than corresponding
errors on the rms values.

When the raw counts rms and covariance spectra are overlaid, as in Fig. 2 (Wilkinson and Uttley,
2009), they match closely, indicating that the reference band is well correlated with all other
energies (the spectral ‘coherence’ is high; e.g. see Vaughan & Nowak 1997).

2.5.2 Uttley (2014)

In (Uttley et al., 2014), the expression for the covariance in absolute units is

Cv (νj) = Rx

√√√√∆νj

(∣∣C̄XY (νj)
∣∣2 − n2)

P̄Y (νj)− PY, noise
, (47)

where νj is the j:th frequency bin. This means that the covariance spectrum can be computed
directly from the coherence, since the above is equivalent to

σ2
cov ≡ Cv(νj) = Rx

√
γ2int (νj)

(
P̄X (νj)− PX, noise

)
∆νj , (48)

where we here should note that we in order to get the covariance in the frequency interval of
interest need to see the bar in P̄X (νj) as the average of the normalized power spectra over the
frequency interval of interest. We can, furthermore, note the resemblance with the rms. Suppose
the intrinsic coherence is = 1 ∀ν, in which case we can use Eq. (15) and the first mean value
theorem for definite integrals15 to obtain the absolute rms,

σ2
cov(γ2int = 1) = Rx

√(
P̄X (νj)− PX, noise

)
∆νj = RxFvar,x. (49)

So we see that the covariance spectrum is closely related to the coherence, and in the limit of unity
coherence, the covariance spectrum should have the same shape as the rms spectrum. However,
even in this case, the signal-to-noise of the covariance spectrum is substantially better than that
of the rms spectrum, since the reference band light curve is effectively used as a ‘matched filter’ to
pick out the correlated variations in each channel- of-interest (Uttley et al., 2014).

In Uttley et al. (2014), the error is given by

∆Cv (νj) =

√
[Cv (νj)]

2
σ2
Y, noise + σ2

Y (νj)σ2
X, noise + σ2

X, noise σ
2
Y, noise

2KMσ2
Y (νj)

(50)

where σ2
Y (νj) is the noise-subtracted absolute rms-squared of the reference band and σ2

Y, noise =

PY, noise 〈y〉2∆νj , where the PSDs are again in the fractional rms squared Miyamoto-normalisation.
Note that [Cv (νj)]

2 is used instead of the absolute rms-squared of the σX (νj) in this formula,
because we assume unity intrinsic coherence, in which case [Cv (νj)]

2 gives a significantly more
accurate measure than the equivalent value obtained from the rms-spectrum. Note also that this
equation is otherwise consistent with Eq. (46); the denominator 2KM in Eq. (50), where K = N/2
in Uttley et al. (2014) and M is number of segments, is equal to NK in Eq. (46).

2.5.3 In a Smaller Frequency Band

As for the rms, we can compute the covariance in a smaller frequency interval. Since the coherence
usually only can be estimated up to an upper limit, we can use the coherence-approach, that is

15Let f : [a, b]→ R be a continuous function. Then there exists c in [a, b] such that
∫ b
a f(x)dx = f(c)(b− a).
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Eq. (48), to find the covariance in the frequency range [fmin,freq_high], where freq_high can be
chosen arbitrarily.

Another approach is presented in Gardner and Done (2014): The light curves are then Fourier
transformed and the power set to zero for all frequencies other than the range of interest. An
inverse Fourier transform is then applied to transform the filtered periodogram back into a light
curve, now containing variability only in a narrow frequency range. The covariance between the
filtered energy bin and reference band lightcurves is then calculated as in Wilkinson and Uttley
(2009).
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A Dead Time
A PSD constructed directly from detector counts consist of two components: the intrinsic noise
from the source which is being studied, and the noise from counting statistics, which, in the presence
of detector dead time, no longer obeys Poisson statistics. While effects of detector dead time on
counting statistics had been recognized and extensively studied in the field of nuclear physics (see
Evans 1955, p. 791 , for a historical summary, and see Müller 1973,1974 for a relatively recent
update), it was not until the timing analyses of the EXOSAT data that their consequences were
fully appreciated in the context of X-ray astrophysics (Zhang et al., 1995).

• Paralyzable: every incident event causes dead time of td, even if it is not detected. The dead
time is cumulative and a contigous dead time segment can thus have length t ∈ [td,∞).

• Non-paralyzable: only a detected event causes the detector to be dead for a period of time
td.

Paralyzable
The incident event rate, rin, is related to the detected event rate, r0, through

r0 = rin exp(−rintd) =
1

τ
exp

(
− td
τ

)
, (51)

with τ = 1/rin is the average time interval between two consecutive incident events.

Carrying out the cosine transform, we have the following power spectrum:

〈Pnoise(f)〉 = 2− 4 exp

(
− td
τ

)
sin (2πftd)

2πfτ
, (52)

where we have multiplied the right-hand side by a factor of 2/ro so as to adopt the Leahy normal-
ization (Zhang et al., 1995). In the case of Miyamoto-normalization, we should have Eq.(52)/R.

B Error Propagation
Either when you need to subtract light curves or subtract spectra. Let f be the full light curve/spec-
tra at hand being the sum of individual components:

f = A+B → σf =
√
σ2
A + σ2

B . (53)

What we want to do is to subtract A to find σB :

f2 = f −A→ σf2 = σB (54)

To get it right, we just need to do:

σf2 =
√
σB =

√
σ2
f − σ2

A (55)
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